You would get 13.7
mi/51mm=3.5mm/13mm
by solving it you will B13.7mm
1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.
2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.
<u>Justification:</u>
There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors. The reliable and accurate network environment makes a single frame economically better.
Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.
With encapsulation, each layer:
- provides a service to the layer above it
- communicates with a corresponding receiving node
Thus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead. This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.
Learn more about encapsulation of packets here: brainly.com/question/22471914
Answer:
56250 N
Explanation:
mass, m = 6000 kg
initial speed, u = 20 m/s
final speed, v = 5 m/s
distance, s = 20 m
Use third equation of motion

5 x 5 = 20 x 20 + 2 a x 20
25 = 400 + 40 a
a = - 9.375 m/s^2
Braking force, F = mass x acceleration
F = 6000 x 9.375
F = 56250 N
F=ma
a=F/m=300/25=12 m/s^2