1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
3 years ago
15

Math Focus

Physics
1 answer:
zhenek [66]3 years ago
3 0

Answer: 4.

Explanation:

Use formula v = d / t, where v = speed, d = distance and t = time.

v = 10 / 2.5

v = 4.

You might be interested in
A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal.
Korvikt [17]

Answer:

B) 27.3 m

Explanation:

The rock describes a parabolic path.

The parabolic movement results from the composition of a uniform rectilinear motion (horizontal ) and a uniformly accelerated rectilinear motion of upward or downward motion (vertical ).

The equation of uniform rectilinear motion (horizontal ) for the x axis is :

x =  vx*t   Equation (1)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m/s  

The equations of uniformly accelerated rectilinear motion of upward (vertical ) for the y axis  are:

(vfy)² = (v₀y)² - 2g(y- y₀)    Equation (2)

vfy = v₀y -gt    Equation (3)

Where:  

y: vertical position in meters (m)  

y₀ : initial vertical position in meters (m)  

t : time in seconds (s)

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Data

v₀ = 30 m/s , at an angle  α=40.0° above the horizontal

v₀x = vx = 30*cos40° = 22.98 m/s

v₀y = 30*sin40° = 19.28 m/s

y₀ = 2m

y =  18.0 m

g = 9.8 m/s²

Calculation of the time (t) it takes for the rock to reach at  18 m above the ground

We replace data in the equation (2)

(vfy)² = (v₀y)² - 2g(y- y₀)    

(vfy)² = (19.28)² - 2(9.8)(18- 2)

(vfy)² = 371.86 - 313.6

(vfy)² = 58.26

v_{f} = \sqrt{58.26}

vfy = 7.63 m/s

We replace vfy = 7.63 m/s in the equation (2)

vfy = v₀y - gt

7.63 = 19.28 - (9.8)(t)

(9.8)(t) = 11.65

t = 11.65 / (9.8)

t = 1.19 s

Horizontal distance from where the rock was thrown to the window

We replace t = 1.19 s , in the equation (1)

x =  vx*t  

x = (22.98)* ( 1.19 )

x = 27.3 m

3 0
3 years ago
Bohr’s atomic model differed from Rutherford's because it explained that electrons exist in specified energy levels surrounding
insens350 [35]

Answer:

electrons exist in specified energy levels

Explanation:

In its gold-foil scattering with alpha particles, Rutherford proved that the plum-pudding model of the atom theorised by Thomson was wrong.

From his experiment, Rutherford inferred that the atom actually consists of a very small nucleus, where all the positive charge is concentrated, and the rest of the atom is basically empty, with the electrons (negatively charged) orbiting around the nucleus at very large distance.

However, Rutherford did not specify anything about the orbits of the electrons. Later, Bohr predicted that the electrons actually orbit the nucleus in specific orbits, each orbit corresponding to a specific energy level. Bohr's model found confirmation in the observation of the emission spectrum lines: when an electron in one of the higher energy level jumps down into an orbit with lower energy, the atom emits a photon which has an energy exactly equal to the difference in energy between the two orbits (and this energy of the photon corresponds to a precise wavelength).

3 0
3 years ago
Read 2 more answers
What is the internal energy of 2.00 mol of diatomic hydrogen gas (H2) at 35°C?
djyliett [7]
As you mentioned, we will use <span>Equipartition Theorem.
</span><span>H2 has 5 degrees of freedom; 3 translations and 2 rotation
</span>Therefore:
Internal energy = (5/2) nRT
You just substitute in the equation with the values of R and T and calculate the internal energy as follows:
Internal energy = (5/2) x 2 x <span>8.314 x 308 = 32.0089 x 10^3 J</span>
4 0
3 years ago
Number of waves that pass a given point in one second
Studentka2010 [4]
<em>number of waves that pass a given point in one second is called <u>frequency..</u></em>
5 0
3 years ago
What is one benefit of lifelong physical activity?
kvasek [131]
The answer would be C
5 0
3 years ago
Other questions:
  • In a type of chemical reaction called thermal decomposition, heat is added to a substance, which then splits apart to form sever
    7·1 answer
  • Enter the expression 2gΔym−−−−−√, where Δ is the uppercase Greek letter Delta.
    9·1 answer
  • A proton is located at the point (x = 1.0 nm, y = 0.0 nm) and an electron is located at the point (x = 0.0 nm, y = 4.0 nm). Find
    14·1 answer
  • A worker pushes horizontally on a 36.0 kg crate with a force of magnitude 112 N. The coefficient of static friction between the
    12·2 answers
  • A car travels 2.5 hours in a northernly direction for 300 km. determine the cars speed and velocity.
    11·1 answer
  • What is the formula for finding the time it takes for an object to reach terminal velocity?
    13·1 answer
  • a force of 5 newtons accelerates an object the object has a mass of 50 grams what is the objects acceleration
    12·1 answer
  • A 100V battery is connected to two charged plates that are 10cm apart.
    6·1 answer
  • A uniform 240g meter stick can be balanced by a 240g weighted​
    12·1 answer
  • Energy in inductors: you need an inductor that will store 20 j of energy when a 3. 0-a current flows through it. what should be
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!