Answer: 1.14 N
Explanation :
As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:
Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3 m3. 9.8 m/s2
Fb = 1.34 N
In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.
We can get the gravity force as follows:
Fg = (mb +mhe) g
The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:
MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg
Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N
Equating both sides of Newton´s 2nd Law in the vertical direction:
T + Fg = Fb
T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N
Newton's first law is sometimes known as the law of inertia. It is the law that states that an object at rest will stay at rest and an object in motion will stay in motion unless a force acts upon it. For example, if I was working with a wrench in space an it slipped, it would keep on going in one direction with a constant speed unless it hits something. Hope this helps!
A funnel cloud is a funnel-shaped cloud of condensed water droplets. They usually appear with a rotating column of air. These extend from the bottom of a cloud that does not touch the ground or a water surface.
Answer:
0.0018 W/m²
Explanation:
Power and intensity are related as:

P= 20.0 W (given)
r = 30.0 m (given)

Intensity in decibels:

Answer:
(a) k = 30.33 N/m
(b) a = 9.8 m/s²
Explanation:
First, we need to find the force acting on the bungee jumper. Since, this is a free fall motion. Therefore, the force must be equal to the weight of jumper:
F = W = mg
F = (65 kg)(9.8 m/s²)
F = 637 N
(a)
Now applying Hooke's Law:
F = k Δx
where,
k = spring constant = ?
Δx = change in length of bungee cord = 33 m - 12 m = 21 m
Therefore,
637 N = k(21 m)
k = 637 N/21 m
<u>k = 30.33 N/m</u>
<u></u>
(b)
Since, this is free fall motion. Thus, the maximum acceleration will be the acceleration due to gravity.
a = g
<u>a = 9.8 m/s²</u>