Answer:
High specific heat -> takes more energy to raise/lower object's temperature
Low specific heat -> takes less energy to raise/lower object's temperature
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of something per unit of mass.
A high specific heat value for an object means it takes more energy to raise or lower that object's temperature. A low specific heat value for an object means it does not take very much energy to heat or cool that object.
Answer:
θ = 53.13° above horizontal
Explanation:
Ignore air resistance.
The time the ball takes to reach its max height will equal the time to travel half the max range R.
√(2h/g) = (R/2)/vcosθ
vsinθ/g = R/2vcosθ
2v²sinθcosθ = Rg
2v²sinθcosθ = 3hg
v² = u² + 2gh
0² = v²sin²θ + 2gh
v²sin²θ = 2gh
v² = 2gh/sin²θ
2v²sinθcosθ = 3hg
(2gh/sin²θ)2sinθcosθ = 3hg
(2/sinθ)2cosθ = 3
cotθ = 3/4
θ = 53.130
Answer:
I actually have 20000 arena points thank you very much
Answer:
A = 1.4 m/s²
B = -0.10493 m/s³
a = 1.29507 m/s²
T = 28095.8271 N
T = 1.13198 W
Explanation:
t = Time taken
g = Acceleration due to gravity = 9.81 m/s²
The equation

Differentiating with respect to time

At t = 0

Hence, A = 1.4 m/s²

B = -0.10493 m/s³
At t = 5 seconds

a = 1.29507 m/s²

T = 28095.8271 N
Weight of rocket


T = 1.13198 W