According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring

Energy lost due to friction

So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy


v = 1.40 m/sec
Power can be calculate through the equation,
Power = Force x velocity
It should be noted that velocity is calculated by dividing displacement by time. Thus, from the given in this item we can calculate for the power.
Power = (120 lb) x (12 ft/9 s)
<em> </em><span><em>Power = 160 lb.ft/s</em></span>