Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Complete Question
An airplane takes off a runway at a constant speed of 49 m/s at constant angle 30 to the horizontal.How high (in meters ) is the airplane above the ground 13 seconds after takeoff?
Answer:
The height is 
Explanation:
From the question we are told that
The speed at which the plane takes off is 
The angle at which it takes off is 
The time taken is 
The vertical distance traveled is mathematically represented as

Substituting values


Answer:2.6 h
Explanation:
Given
Total Trip distance=450 miles
Meeting starts after 10.8 hours
safe Fastest speed is 55 mi/h
so if he drives all the to the meeting with max speed then it takes 
and total allowable time is 10.8
Therefore longest time he can spend over dinner is 
Answer:
A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.
- I'm reading this back and it doesn't make much sense, if you want me to reword this I can
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg