Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
<span>If Shelly rolls ball A in the positive x direction with a velocity of 7.5 meters/second, and It hits stationary ball B and they undergo elastic collision, thus the two balls have different masses, then the following statement which is true is the statement that stated that there was no y-momentum initially.</span>
Answer:
Same frequency, shorter wavelength
Explanation:
The speed of a wave is given by


where,
f = Frequency
= Wavelength
It can be seen that the wavelength is directly proportional to the velocity.
Here the frequency of the sound does not change.
But the velocity of the sound in air is slower.
Hence, the frequency remains same and the wavelength shortens.
<u>Answer:</u>
<em>The moon doesn’t change shape on its own.</em>
<u>Explanation:</u>
Shapes of moon that we observe is based on the different perspectives of view from the earth and position of moon with respect to the sun. The changes arise due to the rotation of earth on its own axis as well as the revolution of moon on its orbit. The moon doesn’t have any light of its own.
It just reflects off the light from the sun. Due to tidal locking phenomenon one face of the moon permanently faces the sun. Because of the changes in position of moon with respect to the sun the moon is lighted up variably giving rise to various phases like new moon, full moon, crescent etc.
Answer:
Explanation:
The momentum of the first piece = m v =- m x 31 i kg m/s in - x direction direction
The momentum of the second piece = -m x 31 j kg m /s in Y - direction
Total momentum = - 31 m( i + j )
To conserve momentum , the third piece must have momentum equal to this
and opposite to it
So momentum of the third piece = 3m x V = 31 m ( i +j )
V = 31/3 ( i + j ) =
Magnitude of velocity V = √2 x 31/ 3 = 14.6 m / s
Its direction will be towards the vector i + j ie 45° from x - axis in positive direction