Answer:
8.85437 m/s
Explanation:
m = Mass of sphere = 5 kg
h = Vertical height = 4 m
g = Acceleration due to gravity = 9.80 m/s²
Applying conservation of energy we get




The sphere's speed when it reaches the bottom of the ramp is 8.85437 m/s
F(g)= Gm1m2/ r^2
If mass is increased, so will the force of gravity because it is in direct relationship with the gravitational force, but if distance is increased, the force of gravity will decrease because it is indirectly related ( since it is on the bottom of the equation)
Answer:
Explanation:
mass of probe m = 474 Kg
initial speed u = 275 m /s
force acting on it F = 5.6 x 10⁻² N
displacement s = 2.42 x 10⁹ m
A )
initial kinetic energy = 1/2 m u² , m is mass of probe.
= .5 x 474 x 275²
= 17923125 J
B )
work done by engine
= force x displacement
= 5.6 x 10⁻² x 2.42 x 10⁹
= 13.55 x 10⁷ J
C ) Final kinetic energy
= Initial K E + work done by force on it
= 17923125 +13.55 x 10⁷
= 1.79 x 10⁷ + 13.55 x 10⁷
= 15.34 x 10⁷ J
D ) If v be its velocity
1/2 m v² = 15.34 x 10⁷
1/2 x 474 x v² = 15.34 x 10⁷
v² = 64.72 x 10⁴
v = 8.04 x 10² m /s
= 804 m /s
Answer:
he covered 80km his displacement was 20km
Explanation:
displacement is the distance from the starting point so in this case its 20 (50-30) and total distance covered is how many kilometers he drove in total
Answer: Jomo Kenyatta
Explanation: Jomo Kenyatta was an anti-colonial activist and politician and was the first Prime Minister of Kenya. He then served as president of the country from 1964 to his death in 1978