Answer:
A- Astronomical body
C- Galaxy
D- Comet
B- Moon
Hope this helps you! Have a great day!
When you touch an object and heat flows OUT of it, INTO your finger, you say the object feels hot.
When you touch an object and heat flows INTO it, OUT of your finger, you say the object feels cold.
If the object has the same temperature as your finger ... <em>around the mid-90s</em> ... then no heat flows in or out of your finger when you touch the object, and the object doesn't feel hot or cold.
The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
Answer:
Explanation:
The work increased the potential energy
W = PE = mgh = 40(9.8)(15) = 5880 J(oules)
With the increase in the temperature of the star, the brightness of the stars will also increase.
<u>Explanation:</u>
The brightness and surface temperature of stars ordinarily increment with age. A star stays close to its underlying situation on the fundamental arrangement until a lot of hydrogen in the center has been devoured, at that point starts to advance into a progressively brilliant star.
The brightness of a star relies upon its structure and how far it is from the planet. Space experts characterize star brilliance as far as clear extent — how splendid the star shows up from Earth — and outright greatness — how brilliant the star shows up at a standard separation