Answer:
c) 2Q
Explanation:
From the given information:
The pressure inside a pipe can be expressed by using the formula:

Since the diameter in both pipes is the same, we can say:

where;
length of the first pipe A
and the length of the second pipe B 
Since the difference in pressure is equivalent in both pipes:
Then:




The collapsed answer of Penchalreddy Badepalli is correct. The composition of two reflections via two mirror making an angle \alpha is equivalent to a single rotation by an angle 2\alpha, hence 2 * 60 deg = 120 deg. And turns is independent of the absolute orientation of the two mirrors in space and/or the direction of incidence of the incoming ray.
One could use elementary geometry to prove this (if you presume the direction of incidence is irrelevant imagine hitting the first mirror at 90 deg, then going retro right back along the normal to the first mirror, and follow the directions).
Answer:
Bottom of the circle.
Explanation:
At the top of the circle the tension and the weight contribute on being the centripetal force, at the middle of the circle only the tension contributes on being the centripetal force (the weight being perpendicular to it), while <u>at the bottom</u> of the circle the tension contributes on being the centripetal force (as always) <em>but the weight against to it</em>, so here is where the tension must be greater to allow the same centripetal force as the other cases, thus here is where the string will break.
Heat normally travels from areas of higher heat to areas of lower heat. For example, if you were to be in a classroom and all the windows and doors were closed, and then you opened a door, then the reason why the room becomes cooler is not because cold air comes inside the room. However, it is because when you open the door, the heat from the classroom you're in escapes the room. This is why it feels cooler when you open a door, or even a window. Heat is traveling from areas of higher heat to areas of lower heat.