The potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
<h3>
What is the energy in a capacitor?</h3>
The energy stored in a capacitor is an electrostatic potential energy.
It is related to the charge(Q) and voltage (V) between the capacitor plates.
It is represented as 'U'.
<h3>
How to determine the potential difference</h3>
Formula:
Potential difference, V is the ratio of the charge to the capacitance of a capacitor.
It is calculated using:
V = Q ÷ C
Where Q = charge 5 × 10∧-5C and C = capacitance 10∧-9
Substitute the values into the equation
Potential difference, V = 5 × 10∧-5 ÷ 10∧-9 = 5 × 10∧4 volts
<h3>
How to determine the energy stored</h3>
Formula:
Energy, U = 1 ÷ 2 (QV)
Where Q= charge and V = potential difference across the capacitor
Energy, U = 1 ÷ 2 ( 5 × 10∧-5 × 5 × 10∧4)
= 0.5 × 25 × 10∧-1
= 0.5 × 2.5
= 1. 25 Joules
Therefore, the potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
Learn more about capacitance here:
brainly.com/question/14883923
#SPJ1
Maybe you can divide the volts its twelve if you do that but itll show you how much to double it by
A 'displacement' always consists of a magnitude and a direction. The two cars you just described have displacements with the same magnitude ... 5 km. But if they didn't both drive in the same direction, then their displacements are different.
Remember:
-- 10 m/s² up and 10 m/s² down are different accelerations
-- 30 mph East and 30 mph West are the same speed but different velocity.
-- 5 km North and 5 km South are the same distance but different displacement.
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
Answer:
+2m/s
Explanation:
average velocity = displacement traveled / total time taken
= +12m/ 6s
= +2 m/s