<h2>Answer</h2>
Option A that is 8.8 × 10^3 m/s
<h2>Explanation</h2>
The magnetic field B is defined from the Lorentz Force Law, and specifically from the magnetic force on a moving charge. It says
Field-strength = BVqsinΔ
<h2>v = E/B </h2>
Since field are perpendicular so sin90 = 1
v = 4.6/10^4 / 5.2
v = 8846.15 m /s
The speed at which electrons pass through the selector without deflection = 8846.15 m /s
The answer is C sorry if it’s wrong
Answer:
L= 2 mH
Explanation:
Given that
Frequency , f= 10 kHz
Maximum current ,I = 0.1 A
Maximum energy stored ,E= 1 x 10⁻⁵ J
The maximum energy stored in the inductor is given as follows

Where ,L= Inductance
I=Current
E=Energy
Now by putting the values in the above equation


L=0.002 H
L= 2 mH
We know that frequency f is given as

C=Capacitance , f=frequency ,L=Inductance
Now by putting the values






Therefore the inductance and capacitance will be 2 mH and 1.26 x 10⁻⁷ F respectively.
Electrostatic forces are non-contact forces; they pull or push on objects without touching them
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision