1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
3 years ago
13

Mercury is in the 80th position in the periodic table. How many protons does it have?

Physics
2 answers:
BaLLatris [955]3 years ago
8 0

mercury is 80 protons

aalyn [17]3 years ago
4 0
Mercury has 80 protons.
You might be interested in
The bigclaw snapping shrimp shown in (Figure 1) is aptly named--it has one big claw that snaps shut with remarkable speed. The p
leva [86]

1) 1.86\cdot 10^6 rad/s^2

2) 2418 rad/s

3) 27000 m/s^2

4) 36.3 m/s

Explanation:

1)

The angular acceleration of an object in rotation is the rate of change of angular velocity.

It can be calculated using the following suvat equation for angular motion:

\theta=\omega_i t +\frac{1}{2}\alpha t^2

where:

\theta is the angular displacement

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

\theta=90^{\circ} = \frac{\pi}{2}rad is the angular displacement

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

Solving for \alpha, we find:

\alpha = \frac{2(\theta-\omega_i t)}{t^2}=\frac{2(\pi/2)-0}{0.0013}=1.86\cdot 10^6 rad/s^2

2)

For an object in accelerated rotational motion, the final angular speed can be found by using another suvat equation:

\omega_f = \omega_i + \alpha t

where

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

Therefore, the final angular speed is:

\omega_f = 0 + (1.86\cdot 10^6)(0.0013)=2418 rad/s

3)

The tangential acceleration is related to the angular acceleration by the following formula:

a_t = \alpha r

where

a_t is the tangential acceleration

\alpha is the angular acceleration

r is the distance of the point from the centre of rotation

Here we want to find the tangential acceleration of the tip of the claw, so:

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

r = 1.5 cm = 0.015 m is the distance of the tip of the claw from the axis of rotation

Substituting,

a_t=(1.86\cdot 10^6)(0.015)=27900 m/s^2

4)

Since the tip of the claw is moving by uniformly accelerated motion, we can find its final speed using the suvat equation:

v=u+at

where

u is the initial linear speed

a is the tangential acceleration

t is the time elapsed

Here we have:

a=27900 m/s^2 (tangential acceleration)

u = 0 m/s (it starts from rest)

t = 1.3 ms = 0.0013 s is the time elapsed

Substituting,

v=0+(27900)(0.0013)=36.3 m/s

5 0
3 years ago
A plane wave with a wavelength of 500 nm is incident normally ona single slit with a width of 5.0 × 10–6 m.Consider waves that r
kaheart [24]

To solve this exercise it is necessary to use the concepts related to Difference in Phase.

The Difference in phase is given by

\Phi = \frac{2\pi \delta}{\lambda}

Where

\delta = Horizontal distance between two points

\lambda = Wavelength

From our values we have,

\lambda = 500nm = 5*10^{-6}m

\theta = 1\°

The horizontal distance between this two points would be given for

\delta = dsin\theta

Therefore using the equation we have

\Phi = \frac{2\pi \delta}{\lambda}

\Phi = \frac{2\pi(dsin\theta)}{\lambda}

\Phi = \frac{2\pi(5*!0^{-6}sin(1))}{500*10^{-9}}

\Phi= 1.096 rad \approx = 1.1 rad

Therefore the correct answer is C.

6 0
3 years ago
A student bangs a brick at the head of a table. Three students are positioned equal distance from the head with their hands on t
iris [78.8K]

Explanation:

that the people closer too the head of the table will feel more vibrations than the people at the end of the table. since the vibrations will slow down as they travel farther down the table

Hope this helps!!

5 0
3 years ago
A car slows down from speed of 72
Nastasia [14]

Explanation:

Given parameters:

Initial velocity = 72km/hr

Final velocity  = 0km/hr

Time taken  = 25s

Unknown:

Acceleration = ?

Solution:

To solve this problem, convert km/hr to m/s;

           1000m = 1km

           3600s = 1hr

  72km/hr;

          1km/hr  = 0.278m/s

         72km/hr = 0.278 x 72  = 20.02m/s

Acceleration is the change in velocity divided by the time taken;

       Acceleration = \frac{final velocity - initial velocity }{time}  

       Acceleration  = \frac{0 - 20.02}{25}   = -0.8m/s

The car  is actually decelerating at a rate of 0.8m/s

5 0
2 years ago
Which of the following does not change the resistance of a wire?
ivanzaharov [21]
Number 1. The medium around the wire
3 0
2 years ago
Other questions:
  • Why does the moons gravity affect the earth so much
    9·2 answers
  • Consider an electric dipole in a uniform electric field. In which orientation does the dipole-field system have the greatest pot
    12·1 answer
  • What is the meaning of heredity
    11·1 answer
  • Which chemical equation represents a double replacement reaction?
    11·1 answer
  • What is the difference between diatomic and poly-atomic molecules? Site some examples.
    8·1 answer
  • What is the portion of an electric circuit that is being powered​
    8·1 answer
  • This is a written question.
    13·1 answer
  • What is the Net Force of the applied forces? *
    6·1 answer
  • Thinking about planck's law, which star would give off the most orange light?
    7·1 answer
  • At the very end of 500 DAYS OF SUMMER, Tom (Joseph Gordon-Levitt) is so heartbroken by
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!