Answer: The temperature and the number of molecules must remain constant for the law to apply.
Explanation:
<u>Yes. The speed of a rocket can exceed the exhaust speed of the fuel.</u>
How this is explained?
- The thrust of the rocket does not depend on the relative speed of the gases or the relative speed of the rocket.
- It depends on conservation of momentum.
What is conservation of momentum?
- Conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the total momentum of a system remains constant.
- Momentum is equal to the mass of an object multiplied by its velocity and is equivalent to the force required to bring the object to a stop in a unit length of time.
- For any array of several objects, the total momentum is the sum of the individual momenta.
- There is a peculiarity, however, in that momentum is a vector, involving both the direction and the magnitude of motion, so that the momenta of objects going in opposite directions can cancel to yield an overall sum of zero.
To know more about conservation of momentum, refer:
brainly.com/question/7538238
#SPJ4
Answer:
15 deg
Explanation:
Assume both snowballs are thrown with the same initial speed 27.2 m/s. The first snowball is thrown at an angle of 75◦ above the horizontal. At what angle should you throw the second snowball to make it hit the same point as the first? The acceleration of gravity is 9.8 m/s 2 . Answer in units of ◦ .
Given:
For first ball, θ1 = 75◦
initial velocity for both the balls, u = 27.2 m/s
for second ball, θ2 = ?
since distance covered by both the balls is same.
Therefore,..
R1=(u^{2} sin2\alpha _{1}) /g[/tex]
the range for the first ball
the range for the second ball
R2=(u^{2} sin2\alpha _{2}) /g[/tex]
(u^{2} sin2\alpha _{2}) /g[/tex]=(u^{2} sin2\alpha _{1}) /g[/tex]
sin2\alpha _{2})=sin2\alpha _{1})
=sin^-1(sin2\alpha _{1})
=1/2sin^-1(sin2\alpha _{1})
=
15 deg
Answer:

Explanation:
To answer the question, we just need to consider the motion along the horizontal direction.
The component of the initial velocity of the ice skater along the x-direction is:

where u = 2.25 m/s is the initial velocity and
is the angle.
The component of the final velocity of the ice skater along the x-direction is

where u = 4.65 m/s is the final velocity and
is the angle.
The acceleration along the x-direction is given by

where
t = 120 s is the time
Substituting,

it moves toward the truck because increased air movement between the car and the truck decreases pressure.
Hope this helped :) <3