Gravitational potential energy, relative to some level =
(mass of the object)
times
(height above the reference level)
times
(acceleration due to gravity) .
Answer:
a)
b)
Explanation:
a) Let's use the constant velocity equation:

- v is the speed of the muon. 0.9*c
- c is the speed of light 3*10⁸ m/s


b) Here we need to use Lorentz factor because the speed of the muon is relativistic. Hence the time in the rest frame is the product of the Lorentz factor times the time in the inertial frame.


v is the speed of muon (0.9c)
Therefore the time in the rest frame will be:



No we use the value of Δt calculated in a)

I hope it helps you!
Answer:
(a) A. Uniform line of charge and B. Uniformly charged sphere
(b) To three digits of precision:
λ = 1.50 * 10^-10 C/m
p = 2.81 * 10^-4 C/m^3
Explanation:
<span>The weightlifter does no work. Although he has exerted force, work is the product of force over distance. Since he has not moved the wall he has done no work.</span>
Answer:
The new separation distance between adjacent bright fringes will be <u>4 mm</u>
Explanation:
Since, the distance between adjacent bright fringes is given by the formula:
Δx₁ = λL/d = 2 mm -------- eqn (1)
where,
Δx = Distance between adjacent bright fringes
λ = wavelength of light = constant for both cases
L = Distance between the slits and the screen
d = slit separation
Now, for the second case:
Slit Separation = d/2
Therefore,
Δx₂ = λL/(d/2)
Δx₂ = 2(λL/d)
using eqn (1), we get:
Δx₂ = 2 Δx₁
Δx₂ = 2(2 mm)
<u>Δx₂ = 4 mm</u>