<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction
It can possible be you're arteries or also you're intestines with is large and small.
Answer: The products and reactants for photosynthesis are reversed in cellular respiration: The reactants of photosynthesis are carbon dioxide and water, which are the products of cellular respiration. The reactants of cellular respiration are oxygen and sugar, which are the products of photosynthesis.
Explanation:
The process of separating alcohol from water can be done in several different ways. The most familiar method is through heating the blended liquid. Since alcohol has a lower boiling temperature than water, it will rapidly become steam. It can then be condensed into a separate container. You can also freeze the alcoholic mixture, which allows for partial removal of the nonalcoholic components; what remains will be more rich in alcohol. Use ordinary table salt to separate isopropyl alcohol from water. The result will be a condensed isopropyl alcohol, not a drinking alcohol.
Given molecule Lithium iodide (LiI)
Heat of hydration = -793 kj/mol
Lattice energy = -730 kJ/mol
Heat of hydration = Heat of solution - Lattice energy
Heat of solution = Hydration + Lattice = -793 + (- 730) = -1523 kJ/mol
Now,
Mass of LiI = 15.0 g
molar mass of LiI = 134 g/mol
# moles of LiI = 15/134 = 0.112 moles
Heat of solution for 1 mole of LiI = -1523 KJ
Therefore, for 0.112 moles of LiI the corresponding heat is
= 0.112 *(-1532) = 171.6 kJ