C i think but you should pick it anyway
Answer:
1 mole represents 6.023×1023 particles.
1 mole of iodine atom= 6.023×1023
Given 127.0g of iodine.
no. of iodine atom = 1 mole of iodine
1mole of magnesium = 24g of Mg = 6.023×1023no.of Mg
Given 48g of Mg = 2×6.023×1023
no. of Mg = 2 moles of Mg
1 mole of chlorine atom= 6.023× 1023
no. of chlorine atom = 35.5g of chlorine atom
Given 71g of chlorine atom=2× 6.023× 1023
no. of chlorine atom = 6.023×1023
2 moles of chlorine atom.
Given that 4g of hydrogen atom.
will be equal to 4 × 6.023 × 1023
no. of atoms of hydrogen= 4 moles of hydrogen atom.
According to the reaction equation:
CH3COO- + H+ → CH3COOH
initial 0.25 0.15
change - 0.025 + 0.025
Equ (0.25-0.025) (0.15 + 0.025)
first, we have to get moles acetate and moles acetic acid:
moles of acetate = 0.25 - 0.025 = 0.225 moles
∴ [CH3COO-] = 0.225 mol / 1 L = 0.225 M
moles of acetic acid = 0.15 + 0.025 = 0.175 moles
∴ [ CH3COOH] = 0.175 mol / 1L = 0.175 M
Pka = -㏒ Ka
= -㏒ 1.8 x 10^-5
= 4.74
from H-H equation we can get the PH value:
PH = Pka + ㏒ [acetate / acetic acid]
PH = 4.74 + ㏒[0.225/0.175]
∴ PH = 4.8
To obey the Law of Conservation of Mass, the sum of all individual elements of a compound is equal to the mass of the compound. So, if HCN has a mass of 7.83 grams, then
7.83 g = mass of H + mass of C + mass of N
We know the masses of H and N to be 0.290 g and 4.06 g, respectively. Hence, we can find for the mass of C:
7.83 = 0.29 + mass of C + 4.06
mass of C = 3.48 g
As an extension to the Law of Conservation of Mass, there is also a Law of Definite Proportions. According to Dalton's atomic theory, a compound is formed from a fixed ratio of its individual elements. From our previous calculations, we know that the mass ratio of H to C to N is 0.29 g: 3.48 g:4.06 grams. The ratio could also be expressed in percentages. Let's find the mass percentage of Carbon in HCN to be used later:
mass % of Carbon = (3.48 g/7.83 g)*100
mass % of Carbon = 44.44%
So, if you collect a different mass of HCN, say 3.37 g, the corresponding mass of Carbon is equal to:
Mass of Carbon = (3.37)(44.44%)
Mass of Carbon = 1.498 g