Answer:
If the answer helps you PLEASE mark me as brainliest
Stay Safe, Stay Happy And stay healthy
In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. During this phase, the conversion of glyceraldehyde-3-phosphate to pyruvate and the coupled formation of ATP take place. Because Glucose is split to yield two molecules of D-Glyceraldehyde-3-phosphate, each step in the payoff phase occurs twice per molecule of glucose.
Glyceraldehyde 3-phosphate dehydrogenase Simultaneous oxidation and phosphorylation of G3P produce 1,3-bisphosphoglycerate (1,3-BPG) and nicotine adenine dinucleotide (NADH).
The divalent cation also affected the response of the enzyme from the endosperm and shoots to adenine nucleotides and inorganic pyrophosphate.
This phase is also called the glucose activation phase. In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. Steps 1, 2, 3, 4, and 5 together are called the preparatory phase.
For more information on phosphorylation click on the link below:
brainly.com/question/7465103
#SPJ4
The middle nitrogen has two sigma bonds and one pi bond. You know that one p orbital is used in the double bond and two sp2 orbitals are involved in the sigma bond. This leaves one sp2 orbital for the lone pair to occupy.
Answer:
Two hydrogen atoms and one oxygen atom (water) was removed.
Explanation:
yw:))
Answer:
339kJ
Explanation:
Given parameters:
Mass of steam = 150g = 0.15kg
Initial temperature of steam = 100°C
Final temperature of water = 100°C
Unknown:
Quantity of heat that must be removed to condense the steam = ?
Solution:
The heat involved here is a latent heat because there is no change temperature. The process is just a phase change.
H = mL
m is the mass
L is the latent heat of vaporization = 2,260 kJ/kg
Insert the parameters and solve;
H = 0.15kg x 2,260 kJ/kg
H = 339kJ