Answer:
86.51° North of West or 273.49°
Explanation:
Let V' = velocity of boat relative to the earth, v = velocity of boat relative to water and V = velocity of water.
Now, by vector addition V' = V + v'.
Since v' = 6.10 m/s in the north direction, v' = (6.10 m/s)j and V = 100 m/s in the east direction, V = (100 m/s)i. So that
V' = V + v'
V' = (100 m/s)i + (6.10 m/s)j
So, we find the direction,Ф the boat must steer to from the components of V'.
So tanФ = 6.10 m/s ÷ 100 m/s
tanФ = 0.061
Ф = tan⁻¹(0.061) = 3.49°
So, the angle from the north is thus 90° - 3.49° = 86.51° North of West or 270° + 3.49° = 273.49°
Change of a liquid to a gas
No. of protons = atomic number = 64
no. of neutrons = mass no. - no. of protons= 154 -64 = 90
no. of electrons = no. of protons = 64
To solve the problem it is necessary to apply the equations related to the conservation of both <em>kinetic of rolling objects</em> and potential energy and the moment of inertia.
The net height from the point where it begins to roll with an inclination of 30 degrees would be



In the case of Inertia would be given by

In general, given an object of mass m, an effective radius k can be defined for an axis through its center of mass, with such a value that its moment of inertia is



Replacing in Energy conservation Equation we have that
Potential Energy = Kinetic Energy of Rolling Object




Therefore the correct answer is C.
Quasi frequency = 4√6
Quasi period = π√6/12
t ≈ 0.4045
<u>Explanation:</u>
Given:
Mass, m = 20g
τ = 400 dyn.s/cm
k = 3920
u(0) = 2
u'(0) = 0
General differential equation:
mu" + τu' + ku = 0
Replacing the variables with the known value:
20u" + 400u' + 3920u = 0
Divide each side by 20
u" + 20u' + 196u = 0
Determining the characteristic equation by replacing y" with r², y' with r and y with 1 in the differential equation.
r² + 20r + 196 = 0
Determining the roots:

r = -10 ± 4√6i
The general solution for two complex roots are:
y = c₁ eᵃt cosbt + c₂ eᵃt sinbt
with a the real part of the roots and b be the imaginary part of the roots.
Since, a = -10 and b = 4√6
u(t) = c₁e⁻¹⁰^t cos 4√6t + c₂e⁻¹⁰^t sin 4√6t
u(0) = 2
u'(0) = 0
(b)
Quasi frequency:
μ = 

(c)
Quasi period:
T = 2π / μ

(d)
|u(t)| < 0.05 cm
u(t) = |2e⁻¹⁰^t cos 4√6t + 5√6/6 e⁻¹⁰^t sin 4√6t < 0.05
solving for t:
τ = t ≈ 0.4045