Answer:
The coefficient of thermal expansion of material B is more than A
Explanation:
As we know that when we apply heat to a material it expands. The amount of expansion depends on the nature of the material. The amount of expansion depends on the coefficient of thermal expansion of the material.
If a material has high value of thermal expansion coefficient then it expands more.
here material A expands less and material B expands more because the pin which is made by material A becomes loosen, so the coefficient of thermal expansion of B is more than the coefficient of thermal expansion of A
<h2>
Answer:</h2>
1.77V
<h2>
Explanation:</h2>
The electromotive force voltage (E) in a cell, is related to the lost voltage (
) and the terminal voltage (
) as follows;
E =
- 
Where;
The lost voltage (
) is the product of the internal resistance (r) of the cell and current (I) in the cell. i.e
= I x r
<em>Substitute </em>
<em> = I x r into equation (i) as follows;</em>
E =
- (I x r) ----------------------(ii)
<em>According to the question;</em>
E = 1.54V
I = 2.15A
r = 0.105Ω
<em>Substitute these values into equation(ii) as follows;</em>
1.54 =
- (2.15 x 0.105)
1.54 =
- (0.22575)
1.54 =
- 0.22575
<em>Solve for </em>
<em>;</em>
= 1.54 + 0.22575
= 1.54 + 0.22575
= 1.77V
Therefore, the terminal voltage of the cell is 1.77V
Answer:
the ratio of the smallest division of main scale to the number of divisions of the vernier scale.
Explanation:
difference between the value of one main scale division and one vernier scale division
Answer:
B. As the temperature increases, the kinetic energy of the molecules increases.
Explanation:
When the temperature of an object increases, the kinetic energy of its particles increases, so the thermal energy of an object increases as its temperature increases.
Sorry!
This cannot be answered. We don't have weight, height, etc.