1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
3 years ago
5

A 0.5 kg block of aluminum (caluminum=900j/kg⋅∘c) is heated to 200∘c. the block is then quickly placed in an insulated tub of co

ld water at 0∘c (cwater=4186j/kg⋅∘c) and sealed. at equilibrium, the temperature of the water and block are measured to be 20∘c. part a if the original experiment is repeated with a 1.0 kg aluminum block, what is the final temperature of the water and block?

Physics
2 answers:
garri49 [273]3 years ago
7 0

The final temperature of the water and block is 36°C

<h3>Further explanation</h3>

Specific Heat Capacity is the amount of energy needed to raise temperature of 1 kg body for 1°C.

\large {\boxed{Q = m \times c \times \Delta t} }

<em>Q = Energy ( Joule )</em>

<em>m = Mass ( kg ) </em>

<em>c = Specific Heat Capacity ( J / kg°C ) </em>

<em>Δt = Change In Temperature ( °C )</em>

Let us now tackle the problem!

<u>Given:</u>

mass of aluminium in the first experiment = m₁ = 0.5 kg

specific heat capacity of aluminium = c₁ = 900 J/kg°C

initial temperature of aluminium = t = 200°C

specific heat capacity of water = c₂ = 4186 J/kg°C

final temperature of the first experiment = t₁ = 20°C

mass of aluminium in the second experiment = m₂ = 1.0 kg

<u>Unknown:</u>

final temperature of the second experiment = t₂ = ?

<u>Solution:</u>

<h2>First Experiment :</h2>

Firstly , we would like to calculate the mass of the water using Conservation of Energy as shown below

Q_{lost} = Q_{gained}

Q_{aluminium} = Q_{water}

m_1 \times c_1 \times (t - t_1) = m \times c_2 \times (t_1 - 0)

0.5 \times 900 \times (200 - 20) = m \times 4186 \times (20 - 0) )

81000 = 83720~m

m = \frac{2025}{2093} ~ kg

<h2>Second Experiment :</h2>

Using the same formula , we could calculate the final temperature of the water and block in the second experiment

Q_{lost} = Q_{gained}

Q_{aluminium} = Q_{water}

m_2 \times c_1 \times (t - t_2) = m \times c_2 \times (t_2 - 0)

1.0 \times 900 \times (200 - t_2) = \frac{2025}{2093} \times 4186 \times (t_2 - 0) )

1.0 \times 900 \times (200 - t_2) = 4050 ~ t_2

180000 - 900 ~ t_2 = 4050 ~ t_2

4950 ~ t_2 = 180000

t_2 = \frac{180000}{4950}

t_2 \approx 36^oC

<h3>Learn more</h3>
  • Efficiency of Engine : brainly.com/question/5597682
  • Flow of Heat : brainly.com/question/3010079
  • Difference Between Temperature and Heat : brainly.com/question/3821712

<h3>Answer details </h3>

Grade: College

Subject: Physics

Chapter: Thermal Physics

Keywords: Heat , Temperature , Block , Aluminium , Ice , Cold , Water

Alex_Xolod [135]3 years ago
4 0

To solve this problem, we should recall the law of conservation of energy. That is, the heat lost by the aluminium must be equal to the heat gained by the cold water. This is expressed in change in enthalpies therefore:

- ΔH aluminium = ΔH water

where ΔH = m Cp (T2 – T1)

The negative sign simply means heat is lost. Therefore we calculate for the mass of water (m):

- 0.5 (900) (20 – 200) = m (4186) (20 – 0)

m = 0.9675 kg

 

Using same mass of water and initial temperature, the final temperature T of a 1.0 kg aluminium block is:

- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)

- 900 T + 180,000 = 4050 T

4950 T = 180,000

T = 36.36°C

 

The final temperature of the water and block is 36.36°C

You might be interested in
Why echos are undesirable in a big hall​
KatRina [158]

Answer:

Helloooo

Sound created in a big hall will persist by repeated reflection from the walls until it is reduced to a value where it is no longer audible. The repeated reflection that results in this persistence of sound is called reverberation. In an auditorium or big hall excessive reverberation is highly undesirable

Explanation:

thanks....

8 0
3 years ago
Read 2 more answers
a 10.0 kg sphere is released from rest in an ocean. as it falls, the water applies a resistive force r
dimaraw [331]

The calculated coefficient of kinetic friction is 0.33125.'

The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.

given mass of the block=10 kg

spring constant k= 2250 Nm

now according to principal of conservation of energy we observe,

the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.

mgh= μ (mgl) +1/2 kx²

10 x 10 x 3= μ(600) +(1125) (0.09)

μ(600) =300 - 101.25

μ = 198.75÷600

μ =0.33125

The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)

Learn more about kinetic friction here-

brainly.com/question/13754413

#SPJ4

4 0
2 years ago
In which direction does the sun appear to move across the sky
blsea [12.9K]

Answer:east

Explanation:Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.

6 0
3 years ago
Read 2 more answers
(c) What would the angle of reflection be if the incident ray
kvasek [131]

Answer:

So, if a wave hits a mirror at an angle of 36°, it will be reflected at the same angle (36°). ... An incident ray of light hits a plane mirror at an angle and is reflected back off it. The angle of reflection is equal to the angle of incidence. Both angles are measured from the normal.

Explanation:

3 0
2 years ago
Your heart has four valves. Normally, these valves open to let blood flow through your heart, and then shut to keep it from flow
stiv31 [10]

Answer:

It influences blood flow

7 0
3 years ago
Other questions:
  • Roberto makes a graphic organizer to compare fusion nuclear reactions and fission nuclear reactions. A venn diagram with 2 inter
    12·2 answers
  • Approximately how far is the sun from the center of the milky way galaxy?
    12·2 answers
  • When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 sec
    6·1 answer
  • Which element is a non metal K Nb O
    5·2 answers
  • A cannonball is fired across a flat field at an angle of 43 degrees with an initial speed 32 m/s and height of 12 m.
    6·1 answer
  • Each of two identical objects carries a net charge. The objects are made from conducting material. One object is attracted to a
    14·1 answer
  • In an electricity demonstration at the Deutsches Museum in Munich, Germany, a person sits inside a metal sphere of radius 0.90 m
    7·1 answer
  • Two long straight wires are parallel and 8.6 cm apart. They are to carry equal currents such that the magnetic field at a point
    14·1 answer
  • Which of the following can be correct units for acceleration?
    6·1 answer
  • The atmosphere of Mercury and Mars are very thin. What effect does the thin atmosphere have on the temperature on the surface of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!