1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
4 years ago
5

A 0.5 kg block of aluminum (caluminum=900j/kg⋅∘c) is heated to 200∘c. the block is then quickly placed in an insulated tub of co

ld water at 0∘c (cwater=4186j/kg⋅∘c) and sealed. at equilibrium, the temperature of the water and block are measured to be 20∘c. part a if the original experiment is repeated with a 1.0 kg aluminum block, what is the final temperature of the water and block?

Physics
2 answers:
garri49 [273]4 years ago
7 0

The final temperature of the water and block is 36°C

<h3>Further explanation</h3>

Specific Heat Capacity is the amount of energy needed to raise temperature of 1 kg body for 1°C.

\large {\boxed{Q = m \times c \times \Delta t} }

<em>Q = Energy ( Joule )</em>

<em>m = Mass ( kg ) </em>

<em>c = Specific Heat Capacity ( J / kg°C ) </em>

<em>Δt = Change In Temperature ( °C )</em>

Let us now tackle the problem!

<u>Given:</u>

mass of aluminium in the first experiment = m₁ = 0.5 kg

specific heat capacity of aluminium = c₁ = 900 J/kg°C

initial temperature of aluminium = t = 200°C

specific heat capacity of water = c₂ = 4186 J/kg°C

final temperature of the first experiment = t₁ = 20°C

mass of aluminium in the second experiment = m₂ = 1.0 kg

<u>Unknown:</u>

final temperature of the second experiment = t₂ = ?

<u>Solution:</u>

<h2>First Experiment :</h2>

Firstly , we would like to calculate the mass of the water using Conservation of Energy as shown below

Q_{lost} = Q_{gained}

Q_{aluminium} = Q_{water}

m_1 \times c_1 \times (t - t_1) = m \times c_2 \times (t_1 - 0)

0.5 \times 900 \times (200 - 20) = m \times 4186 \times (20 - 0) )

81000 = 83720~m

m = \frac{2025}{2093} ~ kg

<h2>Second Experiment :</h2>

Using the same formula , we could calculate the final temperature of the water and block in the second experiment

Q_{lost} = Q_{gained}

Q_{aluminium} = Q_{water}

m_2 \times c_1 \times (t - t_2) = m \times c_2 \times (t_2 - 0)

1.0 \times 900 \times (200 - t_2) = \frac{2025}{2093} \times 4186 \times (t_2 - 0) )

1.0 \times 900 \times (200 - t_2) = 4050 ~ t_2

180000 - 900 ~ t_2 = 4050 ~ t_2

4950 ~ t_2 = 180000

t_2 = \frac{180000}{4950}

t_2 \approx 36^oC

<h3>Learn more</h3>
  • Efficiency of Engine : brainly.com/question/5597682
  • Flow of Heat : brainly.com/question/3010079
  • Difference Between Temperature and Heat : brainly.com/question/3821712

<h3>Answer details </h3>

Grade: College

Subject: Physics

Chapter: Thermal Physics

Keywords: Heat , Temperature , Block , Aluminium , Ice , Cold , Water

Alex_Xolod [135]4 years ago
4 0

To solve this problem, we should recall the law of conservation of energy. That is, the heat lost by the aluminium must be equal to the heat gained by the cold water. This is expressed in change in enthalpies therefore:

- ΔH aluminium = ΔH water

where ΔH = m Cp (T2 – T1)

The negative sign simply means heat is lost. Therefore we calculate for the mass of water (m):

- 0.5 (900) (20 – 200) = m (4186) (20 – 0)

m = 0.9675 kg

 

Using same mass of water and initial temperature, the final temperature T of a 1.0 kg aluminium block is:

- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)

- 900 T + 180,000 = 4050 T

4950 T = 180,000

T = 36.36°C

 

The final temperature of the water and block is 36.36°C

You might be interested in
Which bright object is in shadow
IRINA_888 [86]
My best guess would be sun because it is bright but is surrounded by shadows on all sides.
5 0
3 years ago
Differentiate between angular displacement and linear displacement.​
Sauron [17]

Answer:

The angular displacement is not a length (not measured in meters or feet), so an angular displacement is different than a linear displacement. ... As the object rotates through the angular displacement phi, the point on the edge of the disk moves distance sa along a circular path.

7 0
3 years ago
If the activity of a radionuclide decreases from 5,000 disintegrations per minute to 625 disintegrations per minute
lys-0071 [83]

Answer:

4 hrs

Explanation:

625 = 5000 (1/2)^n

625/5000 = 1/2^n

n = 3 half lives

3 half lives = 12 hours       1 half life = 4 hrs

7 0
3 years ago
Toowwy umy compiere semences,
andrew11 [14]
Idkbjkhfvhkl glgffkkrfkfkfk Goff
6 0
3 years ago
How is energy conserved in a transformation?
irina [24]
As the water plunges, its velocity increases. Its potential energy<span> becomes kinetic</span>energy<span>. The law of conservation of </span>energy<span> states that when one form of </span>energy<span> is</span>transformed<span> to another, no </span>energy<span> is destroyed in the process. ... So the total amount of </span>energy<span> is the same before and after any </span>transformation<span>.

hope it helps

</span>
5 0
3 years ago
Other questions:
  • Jennifer, who has a mass of 48.0 kg, is riding at 40.2 m/s in her red sports car when she must suddenly slam on the brakes. An a
    14·2 answers
  • Protons have a blank change
    9·2 answers
  • A bullet is fired straight up from a gun with a
    14·2 answers
  • If two protons and two neutrons are added to the nucleus of a carbon atom, what nucleus does it become?
    7·2 answers
  • You are in a submarine and are at the surface of the ocean but out in the deep sea. There is a big storm and you want to dive do
    10·1 answer
  • what is the difference in gravitation potential energy when a 3.5 of box is raised from a height of 1.2m to a height of 4.0m?​
    6·1 answer
  • The act or process of changing position and/or direction is called _______.
    8·2 answers
  • Someone help me and tell me how u know it that answer!
    12·2 answers
  • The Moon has much less gravitational force than Earth. What would happen if you went to the Moon? A. Your weight would increase.
    8·1 answer
  • Listed below are ACTION forces. Tell the REACTION force.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!