Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
The most scientific word I can think of is <em />an <em>organism</em>.
Explanation:
spectral lines or signatures of elements depend on temperature, the temperature of the sun is about 5800 K.
at this temperature most calcium atoms are excited to higher energy states than hydrogen atoms and this means that calcium atoms are gonna have more signatures than the atoms of hydrogen.
the statement that the sun shows weak hyrogen lines and strong calcium line is wrong because at the sun's temperature most of the hydrogen atoms are in lower energy states while calcium atoms are in higher energy states hence calcium has more or ''strong'' lines than hydrogen.
Answer:
This is because the acceleration of objects due to gravity is independent of the mass of the object and is constant for all objects, therefore, all objects fall with the same speed.
Explanation:
The weight of an object or force of gravity acting on an object on the surface of earth is a product of its mass and acceleration due to gravity.
Mathematically, w = mg
where, m=mass of the object; g = acceleration due to gravity
Also, from newton's law of gravitation, gravitational force on the object ,F = GMm/r²
where G is the gravitational constant; M is mass of Earth; m is mass of object; r is the distance of separation between the object and the center of mass of the earth which is approximately the radius of earth.
Since the weight of an object is equal to the force of gravitation acting on it
W = F
mg = GMm/r²
g = GM/r²
The expression above is that of the relationship between the force of gravity acting on a body on the earth's surface, the weight of that body and the acceleration due to gravity, g.
It can be seen that the acceleration due to gravity g is independent of the mass of the object. Therefore, the acceleration of objects due to gravity is constant for all objects and all objects fall with the same speed.
Answer:
velocity at the top: 0 m/s
acceleration at the top: -9.8 m/s²
Explanation:
Assuming up is positive and down is negative;
The velocity of the ball at the top of its path will be 0 m/s and the acceleration will be negative.
The velocity is 0 m/s because the ball does not move at the top of its path, and it switches from a positive velocity to a negative velocity. It must go through 0 in order to go from positive to negative.
The acceleration, however, is always negative no matter where the ball is in its motion. This negative acceleration causes the ball to slow down as it reaches the top, and speed up as it reaches the bottom.
<u>Think about it:</u> If there wasn't a negative acceleration, and it was instead 0, the ball would never come back down and instead keep going in a straight line.