Answer:
The exact molecular mass is 18.01528 g/mol
Explanation:
Find this by adding the molecular masses of two hydrogen atoms and one oxygen atom.
Answer:
1. K<10−3
Explanation:
Equilibrium Constant is an expression which involves the concentration of the product divided by the concentration of the reactant molecules.
However the concentration of the pure liquid and pure solid is regarded as 1.
Equilibrium expression for the equation 2H2(g)+O2(g)⇌2H2O(g)
Equilibrium Constant = [H2O]^2/[H2]^2 x [O2]
Since H2O is a pure liquid, its concentration = 1
There fore;
Equilibrium Constant = 1/[H2]^2 x [O2]
This shows that the Equilibrium Constant of the equation will be less than 1 and greater than 0.
<span>pH = -log(H+ concentration)
so pH = -log(1.0 X 10^4)
</span><span>10^-4?
</span>
If this helped and you have any other questions, feel free to comment on my wall. Hope this helped.
4.7 M It may be wrong, but I hope it helps!
Explanation:
When you're diluting a solution, you're essentially keeping the number of moles of solute constant while changing the total volume of the solution.
Now, let's assume that you don't know the equation for dilution calculations.
In this case, you can use the molarity and volume of the concentrated solution to determine how many moles of hydrochloric acid you start with.
c
=
n
V
⇒
n
=
c
⋅
V
n
HCl
=
18 M
⋅
190
⋅
10
−
3
L
=
3.42 moles HCl
You then add water to get the total volume of the solution from
190 mL
to
730 mL
.
The number of moles of hydrochloric acid remains unchanged, which means that the molarity of the diluted solution will be
c
=
3.42 moles
730
⋅
10
−
3
L
=
4.7 M