6 carbon atoms
H H
| |
3 x H - C - C - O - H
| |
H H
The water from the lake must first evaporate from the liquid state to the gaseous state and then condense in the air to form vapors.
The water molecules absorb energy while evaporating and release it when condensing. Their motion gets faster when they are evaporating and slows back down upon condensation.
This question is based in mole ratios. for every mole of cl2, 2 moles of NaCl will be produced. so half of the moles of NaCl gives the moles of Cl2 required. therefore divide 0.35 by 2
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).
Answer:
alkanes alkens alkenes and a bromatic hydrocarbons