Answer:
B) Conduction requires two objects to be in physical contact.
Explanation:
Conduction is when two objects are directly touching each other. So, the objects must come in physical contact with each other.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 6 Fe
<h3>Explanation</h3>
Method One: Refer to electron transfers.
Oxidation states:
- Na: from 0 to +1; loses one electron.
- Fe: from +3 to 0; gains three electrons.
Each mole of Fe₂O₃ contains two Fe atoms and will gain 2 × 3 = 6 electrons during the reaction. It takes 6 moles of Na to supply all those electrons.
6 Na + 1 Fe₂O₃ → ? Na₂O + ? Fe
- There are two moles of Na atoms in each mole of Na₂O. 6 moles of Na will make 3 moles of Na₂O.
- There are two moles of Fe atoms in each mole of Fe₂O₃. 1 mole of Fe₂O₃ will make 2 moles of Fe.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Method Two: Atoms conserve.
Fe₂O₃ has the largest number of atoms among one mole of all four species in this reaction. Assume <em>one</em> as its coefficient.
? Na + <em>1</em> Fe₂O₃ → ? Na₂O + ? Fe
There are two moles of Fe atoms and three moles of O atoms in each mol of Fe₂O₃. One mole of Fe₂O₃ contains two moles of Fe and three moles of O. There are one mole of O atom in every mole of Na₂O. Three moles of O will go to three moles of Na₂O.
? Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Each mole of Na₂O contains two moles of Na. Three moles of Na₂O will contain six moles of Na.
<em>6</em> Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Simplify the coefficients. All coefficients in this equation are now full number and relatively prime. Hence the equation is balanced.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Jovian planets are what we call the "gas giants," so immediately we can eliminate craters or volcanos because they don't have a solid surface. asteroids in space doesn't belong to any specific planet, so the answer is ring systems.
Molarity is expressed as:
Molarity = moles / liter
Given that the cell is rod-shaped, its volume is calculated using the formula for a cylinder's volume:
V = πr²L
V = π * (0.6)² * 4.9
V = 5.54 μm³
1 Liter = 10³ mm³
1 mm = 10³ μm
1 mm³ = 10⁹ μm³
1 liter = 10¹² μm³
So the volume in liters is:
5.54 x 10⁻¹² L
Moles = molarity * liters
Moles = 0.0029 * 5.54 x 10⁻¹²
Moles = 1.61 x 10⁻¹⁴
To get the number of molecules, we multiply the moles by Avagadro's number
Number of molecules = 1.61 x 10⁻¹⁴ * 6.02 x 10²³
There are 9.69 x 10⁹ molecules in the cell