1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
13

HELP QUICK TIMED!!!!!!Drag the expressions into the boxes to correctly complete the table.

Mathematics
2 answers:
ValentinkaMS [17]3 years ago
5 0

Answer:

The following expressions are polynomials:

3x^2-5x^4+2x-12

x^5-5x^4+4x^3-3x^2+2x-1

x^3-7x^2+9x-5x^4-20

The following expressions are not polynomials:

\frac{4}{x^4}+\frac{3}{x^3}-\frac{2}{x^2}-1

x^{-5}-5x^{-4}+4x^{-3}-3x^{-2}+2x^{-1}-1

\sqrt[4]{x}-\sqrt[3]{x}+4\sqrt{x}-8x+16

Step-by-step explanation:

We are required to differentiate the expressions as polynomials and non-polynomials.

Since, we know,

A polynomial is an expression that involves variables and their coefficients separated by mathematical operations with the variables having non-negative integer values.

i.e. A polynomial is of the form, a_{n}x^{n}+a_{n-1}x^{n-1}+.....+a_{1}x+a_{0}, with 'n' being non-negative integer.

Thus, according to the definition, we have that,

The following expressions are polynomials:

3x^2-5x^4+2x-12

x^5-5x^4+4x^3-3x^2+2x-1

x^3-7x^2+9x-5x^4-20

The following expressions are not polynomials:

\frac{4}{x^4}+\frac{3}{x^3}-\frac{2}{x^2}-1

x^{-5}-5x^{-4}+4x^{-3}-3x^{-2}+2x^{-1}-1

\sqrt[4]{x}-\sqrt[3]{x}+4\sqrt{x}-8x+16

a_sh-v [17]3 years ago
3 0
To qualify as a polynomial, the expression in question:
* Consists of one or more terms 
* Variables are only with positive whole exponents
* No variables in the denominator of any term. 


You might be interested in
A bird releases waste from a height of
shepuryov [24]

Answer:

5secs

Step-by-step explanation:

Given the equation of the height expressed ad;

h(t) = - 16t^2 + initial height

Given that initial height = 400feet

h(t) = - 16t^2 + 400

The waste will hit the ground at when h(t) = 0

substitute

0 =  - 16t^2 + 400

16t^2 = 400

t² = 400/16

t² = 25

t = √25

t = 5secs

Hence it will take the easte 5secs to hit the ground

7 0
2 years ago
What is the surface area of the square pyramid with a base of 4
astraxan [27]
Hello,

<span>SA = s^2 + 2 × s × l 

Base = 4 

SA= 4^2 + 2 x 4 x l
SA= 16 + 2 x 4 x l
SA= 16 + 8 x l

Simplified, the surface area of a square pyramid with a base of 4 and an </span>unknown length/height (l) is SA= 16 + 8 x l.


Faith xoxo
5 0
3 years ago
Indicate whether the following congruence statement is true or false.<br> 50 points
Nostrana [21]

Step-by-step explanation:

Since line NL is not necessarily congruent to MQ (labelled with different congruent marks), triangle NLM is not congruent to triangle MQP.

Instead, triangles NLM and QPM are congruent.

8 0
3 years ago
Read 2 more answers
Need help with this data table need it to end up to 1024 thanks
Iteru [2.4K]
1 2 4 8 16 32 64 128 256 512 1024. each one is 2 times the previous

3 0
3 years ago
Solve the following question
White raven [17]

Answer:

g) u^{4}\cdot v^{-1}\cdot z^{3}, h) \frac{(x+4)\cdot (x+2)}{3\cdot (x-5)}

Step-by-step explanation:

We proceed to solve each equation by algebraic means:

g) \frac{u^{5}\cdot v}{z}\div  \frac{u\cdot v^{2}}{z^{4}}

1) \frac{u^{5}\cdot v}{z}\div  \frac{u\cdot v^{2}}{z^{4}} Given

2) \frac{\frac{u^{5}\cdot v}{z} }{\frac{u\cdot v^{2}}{z^{4}} } Definition of division

3) \frac{u^{5}\cdot v\cdot z^{4}}{u\cdot v^{2}\cdot z}   \frac{\frac{a}{b} }{\frac{c}{d} } = \frac{a\cdot d}{b\cdot c}

4) \left(\frac{u^{5}}{u} \right)\cdot \left(\frac{v}{v^{2}} \right)\cdot \left(\frac{z^{4}}{z} \right)  Associative property

5) u^{4}\cdot v^{-1}\cdot z^{3}   \frac{a^{m}}{a^{n}} = a^{m-n}/Result

h) \frac{x^{2}-16}{x^{2}-10\cdot x + 25} \div \frac{3\cdot x - 12}{x^{2}-3\cdot x -10}

1) \frac{x^{2}-16}{x^{2}-10\cdot x + 25} \div \frac{3\cdot x - 12}{x^{2}-3\cdot x -10} Given

2) \frac{\frac{x^{2}-16}{x^{2}-10\cdot x+25} }{\frac{3\cdot x - 12}{x^{2}-3\cdot x - 10} } Definition of division

3) \frac{(x^{2}-16)\cdot (x^{2}-3\cdot x -10)}{(x^{2}-10\cdot x + 25)\cdot (3\cdot x - 12)}  \frac{\frac{a}{b} }{\frac{c}{d} } = \frac{a\cdot d}{b\cdot c}

4) \frac{(x+4)\cdot (x-4)\cdot (x-5)\cdot (x+2)}{3\cdot (x-5)^{2}\cdot (x-4) } Factorization/Distributive property

5) \left(\frac{1}{3} \right)\cdot (x+4)\cdot (x+2)\cdot \left(\frac{x-4}{x-4} \right)\cdot \left[\frac{x-5}{(x-5)^{2}} \right] Modulative and commutative properties/Associative property

6) \frac{(x+4)\cdot (x+2)}{3\cdot (x-5)}  \frac{a^{m}}{a^{n}} = a^{m-n}/\frac{a}{b}\times \frac{c}{d} = \frac{a\cdot c}{b\cdot d}/Definition of division/Result

3 0
3 years ago
Other questions:
  • (3x*2-x+8y)+(4x*2-3x-5y)<br><br>help me please
    15·1 answer
  • 1. Find Cos 0 if Sin 0 = 0.7771 if 0 so&lt;<br> a. 0.6293<br> b. +0.6293<br> C. 0.3961<br> d. -03961
    7·1 answer
  • Hey ya'll, my assignment asked me.....Evan spent 20 hours doing homework last week. This week he spent 25 hours doing homework.
    5·2 answers
  • How many cups of raisins will Gina need to make 32 servings of trail mix
    10·1 answer
  • Where would we find the point (–10,0)? A). y-axis B).quadrant ll C).x-axis D).quadrant lll
    5·2 answers
  • Solve for x <br> 3x - (8-x) = 47
    9·2 answers
  • If HI = 7, find KL.
    5·1 answer
  • Cookies are on sale! Today each cookie costs $0.75 less than the normal price. Right now if you buy 7 of them it will only cost
    12·2 answers
  • 1-4
    13·1 answer
  • Another question from me cause yeah :DDDD
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!