Democritus was the one who had theorized that atoms make up everything and they are indivisible.
Dalton was the creator of the first actual atomic theory, most of his research was on gasses and meteorology.
Thompson was the original man who put together the plum pudding model in which Rutherford later proved wrong during his career.
Rutherford had discovered the nucleus within an atom. He had put together gold foil experiment.
Bohr had developed the idea of neutrons and electrons surrounding the nucleus. He was also the creator of the planetary model we now use to calculate electrons with.
Answer:
The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.
Explanation:
hope it helps.
have a wonderful day!
Answer:
The activation energy for the decomposition = 33813.28 J/mol
Explanation:
Using the expression,
Wherem
is the activation energy
R is Gas constant having value = 8.314 J / K mol
Thus, given that,
= ?
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (5 + 273.15) K = 278.15 K
T = (25 + 273.15) K = 298.15 K
So,




<u>The activation energy for the decomposition = 33813.28 J/mol</u>
Answer:
Mn (s) + NiCl2 (aq) → MnCl2 (aq) + Ni
Explanation:
The order of displacement of metals from aqueous solution by another metal is defined by the activity series of metals.
The activity series arranges metals in order of reactivity and increasing electrode potentials. The less negative the electrode potential of a metal is, the less reactive it is and the lower it is found in the activity series.
Nickel has a less negative electrode potential than manganese hence it is displaced from an aqueous solution of its salt by manganese spontaneously.
Answer: -
D. Network
Explanation: -
Diamond is an allotrope of carbon. In diamond each carbon atom makes four bonds to other carbon atoms.
They exist in tetrahedral shape.
Diamond has strong covalent bonds. They extend in all the three dimensions
Such covalent bonds are called network covalent bonds. They require significant amounts of energy to break.