Answers are:
2. It pushes on all objects that are on Earth’s surface.
3. It can be measured in atmospheres or kilopascals.
Barometric pressure (atmospheric pressure), is the pressure within the atmosphere of Earth
Atmospheric pressure decreases with increasing height, because there are fewer air molecules above a given object.
Barometer is an instrument used in meteorology to measure atmospheric pressure.
Atmospheric pressure (atm) is the force per unit area by the weight of air above that point.
Kilopascal (kPa) is a metric system pressure unit and equals to 1000 force of newton per square meter.
Atmospheric pressure results from molecular collisions of atmospheric gases.
The correct option is this: THE ORGANISM IS A PROKARYOTES.
There are basically two types of cells, prokaryotic and eukaryotic cells. The prokaryotic cells are primitive cells which contain only a few materials which are not well organised. This type of cells is usually found in microscopic organisms. The cells lack organised nucleus and cell organelles which have membranes.<span />
Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml
</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100
</span>therefore:
V1 = 20 ml
Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.