The frequency of the wave has not changed.
In fact, the frequency of a wave is given by:

where v is the wave's speed and
is the wavelength.
Applying the formula:
- In air, the frequency of the wave is:

- underwater, the frequency of the wave is:

So, the frequency has not changed.
<span>500 cubic centimeters</span>
Answer:
40 N
Explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N
Answer:
1. B
2. A
Explanation:
1. The displacement is the change in position. At t = 0, x = 1.0. At t = 8.0, x = 6.0. So from t=0 to t=8, Δx = 6.0 − 1.0 = 5.0.
2. The instantaneous velocity is the slope of the tangent line at any point of a position vs. time graph.
The average velocity is the displacement divided by the time interval.