Answer:
e = 10 V
Explanation:
given,
number of the coaxial loops = 10
Cross sectional area = 0.5 m²
magnitude of magnetic field =
B = 3 T + (2 T/s)*t.
B = ( 3+ 2 t ) T
induced potential difference = ?
At time = 2 s
we know,
induced emf

∅ = B . A




e = -10 V
magnitude of induced emf
|e| = |-10 V|
e = 10 V
the induced potential difference in the loop = e = 10 V
Answer:
.D.It will decrease because the charge will move in the direction of the electric field
Explanation:
<em>which there is a uniform electric field. (A uniform field is one whose strength and direction are the same at all points within the region.) What happens to the electric potential energy of the positive charge, after the charge is released from rest in the uniform electric field?A. It will remain constant because the electric field is uniform.B.It will decrease because the charge will move in the opposite direction of the electric field.C.It will remain constant because the charge remains at rest.D.It will decrease because the charge will move in the direction of the electric field.E.It will increase because the charge will move in the direction of the electric field.</em>
solution
The potential energy decreases, converted to kinetic energy
The charge will feel a force in the direction of the electric field (F=Eq) and thus it will accelerate with
a constant acceleration. (Just like releasing an object above the earth's surface - constant acceleration,
at least until it hits something.)
tus te answer will be
.D.It will decrease because the charge will move in the direction of the electric field
Answer:
(a) 8 m/s
(b) 5 s
Explanation:
(a)
Using,
V² = U²+2gh ......................... Equation 1
Where V = final velocity, U = Initial velocity, g = acceleration due to gravity on the surface of the moon, h = height reached.
Given: V = 0 m/s ( At it's maximum height), g = -1.6 m/s² ( as its moves against gravity), h = 20 m.
Substitute into equation 1
0 = U²+[2×20×(-1.6)]
-U² = - 64
U² = 64
U = √64
U = 8 m/s.
(b)
V = U +gt.................... Equation 2
Where t = time to reach the maximum height.
Given: V = 0 m/s ( At the maximum height), g = -1.6 m/s² ( Moving against gravity), U = 8 m/s.
Substitute into equation 2
0 = 8+(-1.6t)
-8 = -1.6t
-1.6t = -8
t = -8/-1.6
t = 5 s.
Answer:
Approximately
.
Explanation:
<h3>Solve this question with a speed-time plot</h3>
The skateboarder started with an initial speed of
and came to a stop when her speed became
. How much time would that take if her acceleration is
?
.
Refer to the speed-time graph in the diagram attached. This diagram shows the velocity-time plot of this skateboarder between the time she reached the incline and the time when she came to a stop. This plot, along with the vertical speed axis and the horizontal time axis, form a triangle. The area of this triangle should be equal to the distance that the skateboarder travelled while she was moving up this incline until she came to a stop. For this particular question, that area is approximately equal to:
.
In other words, the skateboarder travelled
up the slope until she came to a stop.
<h3>Solve this question with an SUVAT equation</h3>
A more general equation for this kind of motion is:
,
where:
and
are the initial and final velocity of the object,
is the constant acceleration that changed the velocity of this object from
to
, and
is the distance that this object travelled while its velocity changed from
to
.
For the skateboarder in this question:
.
Answer: The total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.
Explanation:
Given: Inner diameter = 0.9 m
q = 872 
Now, radii is calculated as follows.

Hence, the rate of heat transfer is as follows.

where,
V = volume of sphere = 
Substitute the values into above formula as follows.

Thus, we can conclude that the total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.