1). Oört Cloud
2). Kuiper Belt
3). asteroids
4). meteorite
Note:
Your teacher doesn't need this information !
Your teacher needs for you to LEARN stuff.
You have the answers now, but until you memorize the information,
you haven't learned anything.
Explanation:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
It holds more weight in the regular water.