The mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Work in physics is the energy that is transferred to or from an item when a force is applied along a displacement. It is frequently described in its most basic form as the result of force and displacement.
The quantity of energy moved or transformed per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units.. A scalar quantity is power.
Given 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s.
So let,
m = 75 kg
v = 11.0 m/s
t = 5.0 s
So the mechanical work done by the sprinter during this time will be as follow:
W = 0.5 mv²
W = 0.5 (75)(11)²
W = 4537.5 J
The average power the sprinter must generate will be as follow:
Power(P) = W / t
P = 4537.5/5
P = 907.5 W
Only 25% is absorbed. So, the sprinter only absorbed 226.875 J per second which is equal to 54.20 calories per second.
Hence mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Learn more about mechanical power here:
brainly.com/question/25573309
#SPJ10
Answer:
Explanation:
Normal length of spring = 28.3 cm
stretched length of spring = 38.2 cm
length of extension = 38.2 - 28.3 = 9.9 cm
= 9.9 x 10⁻² m
force applied to stretch = .55 x 9.8 ( mg )
= 5.39 N
Force constant = force applied / extension
= 5.39 / 9.9 x 10⁻²
= .5444 x 10² N /m
= 54.44 N/m
Answer:
yes
Explanation:
objects with constant velocity also have zero net external force. this means the forces on the object are balanced. this mean they are in equilibrium
The solution for the problem is:
1 Watt = 1 Joule per second
1 Watt*second = 1 Joule
a Kilowatt is 1,000 Watts
an hour is 60 seconds times 60 minutes or 3,600 seconds
a Kilowatt * hour is 1,000 Watts in 3,600 seconds
15 W*h = 15,000 Watt*hour = 15,000 Watt * 3,600 seconds = 54,000,000
Watt*second
54,000,000 Watt*second = ? Joules
54,000,000 Joules / second = 54,000,000 Watts
Explanation:
the acceleration will be unchanged according to newton second law of motion