1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
3 years ago
8

What is the most common source of energy for surface currents?

Physics
2 answers:
valentinak56 [21]3 years ago
7 0
Heat is a common form or primary source of energy that can come from solar radiation or from deep earth or from volcanoes
This the the most common form of energy for surface currents
Yuliya22 [10]3 years ago
6 0

Answer:

The ocean surface currents are mainly generated due to the wind that blows over the ocean and density differences in the water. In simple words, these surface currents are formed due to the global wind systems that are facilitated by the energy from the sun.

There are various factors that control the pattern of surface currents in the oceans, which include the Coriolis force, the prevailing wind blowing direction, and also the location of various types of landforms near the ocean bodies that continuously interact the water currents.

Thus, the sun is the most common source of energy for the creation of surface currents.

You might be interested in
A hole is drilled in a metal plate. When the metal is raised to a higher temperature, what happens to the diameter of the hole?
zysi [14]

Answer:

The diameter of the hole increases

Explanation:

Metals expand and contract with temperature. Whenever metal is heated, it usually expands in relation to its thermal expansivity. This expansion leads to a slight increase in surface area.

Once the surface area of the metal changes, this means that the dimensions of the whole metal surface changed. As a result, the diameter of the hole drilled in the metal plate will change also. In our case, the diameter of the hole will increase.

4 0
3 years ago
Which statement about the atomic nucleus is correct? a. The nucleus is made of protons and neutrons and has a negative charge. b
Anon25 [30]
"b. The nucleus is made of protons and neutrons and has a positive charge" is the only option that is true about the atomic nucleus. The protons give it a positive charge.
5 0
3 years ago
Kellie found a sample of a pure element. She carefully studied the sample and made a list of its properties.
aivan3 [116]
1. (C.) -Si- is silicone which at room temp is a solid and it's a hard crystalline Brittle rock basically...

2. And it will Be D. NOT C... i can't stand user's who throw out answers for free points.... 
3 0
3 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
6) A map in a ship’s log gives directions to the location of a buried treasure. The starting location is an old oak tree. Accord
kiruha [24]

Answer:

Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)

Explanation:

4 0
3 years ago
Other questions:
  • Which of the following would double the amount of current flowing through a piece of metal wire? Which of the following would do
    5·1 answer
  • How many groups are in the modern periodic table?<br><br> 12<br> 18<br> 22<br> 24
    6·2 answers
  • Consider two particles A and B. The angular position of particle A, with constant angular acceleration, depends on time accordin
    9·1 answer
  • An object acted on by three forces moves with constant velocity. One force acting on the object is in the positive xx direction
    14·1 answer
  • Suppose that a sled is accelerating at a rate of 2 m/s2. If the net force is tripled and the mass is halved, then what is the ne
    5·1 answer
  • How much min the basketball 1 player play​
    11·1 answer
  • A dart hits a dartboard and stops in 0.060 s. The net force on the dart is 14 N during the collision.
    14·1 answer
  • a condenser of capacitor 50 micro coulomb is charged to 10 volt the energy stored is can you do derivation please
    14·1 answer
  • I WILL GIVE BRAINLIEST!!!
    14·1 answer
  • A motorboat starting from rest travels in a straight line on a lake. If the boat reahes a speed of 8.0m/s in 10s what is the boa
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!