Answer:
equilibrium
Explanation:
acceleration will remain constant
Answer:
The direction of the car’s change in linear momentum is 149.04° West of North
Explanation:
Momentum is defined as the product of mass of a body and its velocity
Momentum = mass × velocity
Change in Momentum = mass × change in velocity
∆P = m∆v
∆P = m(v-u)
Given m = 1500kg
v = 25m/s
u = 15m/s
∆P = 1500(25-15)
∆P = 1500×10
∆P = 15,000kgm/s
Since the car first travels due East i.e +x direction
x = 25m/s
Travelling due south is negative y direction
y = -15m/s
Direction of the car change
θ = tan^-1(y/x)
θ = tan^-1(-15/25)
θ = tan^-1(-0.6)
θ = -30.96°
Since tan is negative in the second quadrant
θ = 180-30.96
θ = 149.04°
The direction of the car’s change in linear momentum is 149.04° West of North
A body that is falling is an example of gravity at work.
The initial speed of the automobile is 49.84km/hr
<u>Explanation:</u>
Given:
Acceleration, a = 1.77 m/s²
Time, t = 6s
Final speed, v = 88 km/h
v = 88 X 0.278 m/s
v = 24.464 m/s
Initial speed, u = ?
We know,
v = u + at
On substituting the value in the formula we get:
24.464 = u + (1.77 X 6)
24.464 = u + 10.62
u = 24.464 - 10.62 m/s
u = 13.844 m/s
Converting u = 13.844 m/s to km/hr
1 m/s = 3.6 km/hr
13.844 m/s = 13.844 X 3.6 km/hr
u = 49.84 km/hr
Therefore, the initial speed of the automobile is 49.84km/hr