Answer:
Explanation:
We can only talk about resonance hybrid for a compound in which more than one structure is possible based on its observed chemical properties.
There are compounds whose chemical properties can not be satisfactorily explained on the basis of a single chemical structure. In the case of such compounds, we invoke the idea of resonance.
A resonance hybrid is a single structure drawn to represent a given chemical specie which exhibits resonance behaviour and can otherwise be represented on paper in the form of an average of two or more chemical structures separated each from the next by a double-headed arrow.
Answer:
a. 123.9°C
b.
c.
Explanation:
Hello, I'm attaching a picture with the numerical development of this exercise.
a. Since the steam is overheated vapour, the specific volume is gotten from the corresponding table. Then, as it became a saturated vapour, we look for the interval in which the same volume of state 1 is, then we interpolate and get the temperature.
b. Now, at 80°C, since it is about a rigid tank (constant volume for every thermodynamic process), the specific volume of the mixture is 0.79645 m^3/kg as well, so the specific volume for the liquid and the vapour are taken into account to get the quality of 0.234.
c. Now,since this is an isocoric process, the heat transfer per kg of steam is computed as the difference in the internal energy, considering the initial condition (showed in a. part) and the final one computed here.
** The thermodynamic data were obtained from Cengel's thermodynamics book 7th edition.
Best regards.
This assumption is not valid because, there are some elements which exist in two or more forms; they have the same atomic number but differ in their mass number, which meas that they possess different number of neutrons. These type of element are called isotopes. Isotope have the same atomic number and similar physical and chemical properties but they have different number of neutrons and therefore possess different masses.
For every, 3 Br- ions, 1 Al3+ ion reacts to form AlBr3.
Convert 16.2g of aluminum to moles:
16.2g Al / 27.0g per mol = 0.60 mols.
Based on the above ratio, 0.60 mols of Al will react with 1.8 mols of Br.
Convert 1.8 mols of Br to its mass:
1.8 mols Br × 79.9g per mol = 143.82g of Br.