Answer:
1) Endothermic.
2)
3)
Explanation:
Hello there!
1) In this case, for these calorimetry problems, we can realize that since the temperature decreases the reaction is endothermic because it is absorbing heat from the solution, that is why the temperature goes from 22.00 °C to 16.0°C.
2) Now, for the total heat released by the reaction, we first need to assume that all of it is released by the solution since it is possible to assume that the calorimeter is perfectly isolated. In such a way, it is also valid to assume that the specific heat of the solution is 4.184 J/(g°C) as it is mostly water, therefore, the heat released by the reaction is:
3) Finally, since the enthalpy of reaction is calculated by dividing the heat released by the reaction over the moles of the solute, in this case NH4Cl, we proceed as follows:

Best regards!
Best regards!
Answer:
The answer is
<h2>2 cm/year</h2>
Explanation:
To find the rate in cm/year we must first convert 200 m into cm
1 m = 100 cm
if 1 m = 100 cm
Then 200 m = 200 × 100 = 20 ,000 cm
So the rate is
<h2>

</h2>
<u>Reduce the fraction with 10,000</u>
We have the final answer as
<h3>2 cm/year</h3>
Hope this helps you
Answer:
Cac2 is a answer please mark me brainliest
There is 6.02*10^23 molecule per mole. And there is 2 atoms per oxygen molecule. So the answer is 1.204*10^24 atoms in 1.0 mole of O2.