Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)

Answer:
All the given option is false.
Explanation:
A)
This is not true for all the materials like composite because the Poisson ratio for composite material can be negative that is why positive tensile stress may produce positive lateral strain.
B)
This is not true for all the material because the Poisson ratio for some material can be positive that is why positive tensile stress may produce negative lateral strain.
C)
The explanation is same as option A.
D)
This is not true for all the materials ,It is valid only up to elastic limit .After the elastic limit the strain and stress does not follow linear path.
E)
This is not true for all the materials because some materials like composite is having negative value of Young's modulus.
Therefore all the given option is false.
inertia is the answer!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!