Answer:

Explanation:
From the given information, the LED is operating with a given wavelength of 850 nm or 0.85 μm.
Hence, the material dispersion is 
Now, using the pulse spread formula:


Thus, the pulse spreading as a result of material dispersion is:
Answer:
Explanation:subtract all of those by the all of the other numbers and that’s the answer i think that’s the way I learned it
Answer:
"The distance between crests is 3 cm."
Explanation:
If he writes down "The distance between crests is 3 cm."
That means he is describing the wavelength of a wave and not longitudinal wave. He ought to write something about " direction "
Longitudinal waves are waves in which the displacement of the medium is in the same direction as, or parallel to, the direction of propagation of the wave. While
Wavelength is the distance between the two successfully Crest or trough
v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Answer:
move at constant velocity.
Explanation:
Newton's first law (also known as law of inertia) states that:
"when the net force acting on an object is zero, the object will keep its state of rest or if it is moving, it will continue moving at constant velocity".
In the case of the probe, friction in deep space is negligible, therefore when the engine is shut down, there are no more forces acting on the probe: the net force therefore will be zero, so the probe will move at constant velocity.