1) START counting for sig. figs. On the FIRST non-zero digit.
2) STOP counting for sig. figs. On the LAST non-zero digit.
3) Non-zero digits are ALWAYS significant.
4) Zeroes in between two non-zero digits are significant. All other zeroes are insignificant.
Answer:
0.486 L
Explanation:
Step 1: Write the balanced reaction
2 KCIO₃(s) ⇒ 2 KCI (s) + 3 O₂(g)
Step 2: Calculate the moles corresponding to 1.52 g of KCIO₃
The molar mass of KCIO₃ is 122.55 g/mol.
1.52 g × 1 mol/122.55 g = 0.0124 mol
Step 3: Calculate the moles of O₂ produced from 0.0124 moles of KCIO₃
The molar ratio of KCIO₃ to O₂ is 2:3. The moles of O₂ produced are 3/2 × 0.0124 mol = 0.0186 mol
Step 4: Calculate the volume corresponding to 0.0186 moles of O₂
0.0186 moles of O₂ are at 37 °C (310 K) and 0.974 atm. We can calculate the volume of oxygen using the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 0.0186 mol × (0.0821 atm.L/mol.K) × 310 K/0.974 atm = 0.486 L
The suggested answers are for K=298 degrees and the nearest correct answer seems to be increase the room temperature by 22 degrees Fahrenheit. But by calculation, for 300 K, then convert 300k to degrees Celsius = 300-273.15=26.85 degrees celsius. Then convert the 26.85 to degrees F, so F=9/5C + 32= 48.33+32=80.33-55F (present room temperature)=25.33 degrees F to increase the room temperature by.
1<span>Pepsi is a heterogeneous mixture Oatmeal with raisins is a homogeneous mixture.
2</span>
<span>Milk is a pure substance, not a mixture
</span>