Answer:
Startinfg speed is 13.82 m/s
Explanation:
Use equation for realtion between start and final speed :
Vf=Vs+a*t
Vf-final speed
Vs-start speed
Vf=24.44m/s
a=1.77m/s²(acceleration)
t=6.00s(Time)
Vf=Vs+a*t
Vs=a*t-Vf
Vs=1.77m/s²*6s-24.44m/s
Vs=-13.82m/s
Answer:
.
Explanation:
By Newton's Second Law, the acceleration
of an object is proportional to the net force
on it. In particular, if the mass of the object is
, then
.
Rewrite this equation to obtain:
.
In this case, the assumption is that the
force is the only force that is acting on the object. Hence, the net force
on the object would also be
Make sure that all values are in their standard units. Forces should be in Newtons (same as
, and the acceleration of the object should be in meters-per-second-squared (
). Apply the equation
to find the mass of the object.
.
Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
Answer:
A. El volumen
B. La densidad.
Explanation:
A derived quantity is defined as one that has to be calculated by using two or more other measurements.
Volume is a derived quantity because it requires one to use different measurements to determine it. For instance, in the case of a cube, the length, width and height of the cube are all needed to calculate volume.
Density is also a derived quantity because it needs both volume and mass for it to be calculated.
Answer:
The speed of the resistive force is 42.426 m/s
Explanation:
Given;
mass of skydiver, m = 75 kg
terminal velocity, 
The resistive force on the skydiver is known as drag force.
Drag force is directly proportional to square of terminal velocity.

Where;
k is a constant

When the new drag force is half of the original drag force;

Therefore, the speed of the resistive force is 42.426 m/s