Answer: n = c / v" "c" is the speed of light in a vacuum, "v" is the speed of light in that substance and "n" is the index of refraction. According to the formula, the index of refraction is the relation between the speed of light in a vacuum and the speed of light in a substance.
Explanation: the relation is the vacuum and the speed of light in a substance.
Answer:
Valence electrons are outer shell electrons with an atom and can participate in the formation of chemical bonds. In single covalent bonds, typically both atoms in the bond contribute one valence electron in order to form a shared pair. The ground state of an atom is the lowest energy state of the atom.
Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses
and
whose respective velocities before collision are
and
;

where
and
are their respective velocities after collision.
Given;

Note that
=0 because the second mass
was at rest before the collision.
Also, since the two masses are equal, we can say that
so that equation (1) is reduced as follows;

m cancels out of both sides of equation (2), and we obtain the following;

a) When
, we obtain the following by equation(3)

b) As
stops moving
, therefore,

The answer for this would be A. since power is Joules/seconds and energy is rated in Joules