Answer:
0.075 T
Explanation:
When a current-carrying wire is immersed in a region with magnetic field, the wire experiences a force, given by

where
I is the current in the wire
L is the length of the wire
B is the strength of the magnetic field
is the angle between the direction of I and B
In this problem we have:
L = 0.65 m is the length of the wire
I = 8.2 A is the current in the wire
F = 0.40 N is the force experienced by the wire
since the current is at right angle with the magnetic field
Solving the formula for B, we find the strength of the magnetic field:

Answer:
i/f = i/o + i/i f = focal, o = object, i = image
1 / i = 1 / f - 1 / o = (o - f) / o f
i = o * f / ( o - f) image distance
i = 12.5 * 22 / (12.5 - 22) = -28.9 cm
Image is real
Image is 28.9 cm to left of lens
M = - i / o = = 28.9 / 12.5 = 2.3 magnification (convex lens)
Diagram B .... light shines through at an angle
Answer:
796.18 Hz
Explanation:
Applying,
Maximum velocity = Amplitude×Angular velocity
Therefore,
V' = A(2πf)............... Equation 1
Where V' = maximum velocity of the eardrum, A = Amplitude of vibration of the eardrum, f = frequency of the eardrum vibration, π = pie
make f the subject of the equation
f = V'/2πA................ Equation 2
From the question,
Given: V' = 3.6×10⁻³ m/s, A' = 7.2×10⁻⁷ m,
Constant: 3.14.
Substitute these values into equation 2
f = 3.6×10⁻³/( 7.2×10⁻⁷×2×3.14)
f = 796.18 Hz