Answer:
a) No
b) 42%
c) 8%
d) X 0 1 2
P(X) 42% 50% 8%
e) 0.62
Step-by-step explanation:
a) No, the two games are not independent because the the probability you win the second game is dependent on the probability that you win or lose the second game.
b) P(lose first game) = 1 - P(win first game) = 1 - 0.4 = 0.6
P(lose second game) = 1 - P(win second game) = 1 - 0.3 = 0.7
P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
c) P(win first game) = 0.4
P(win second game) = 0.2
P(win both games) = P(win first game) × P(win second game) = 0.4 × 0.2 = 0.08 = 8%
d) X 0 1 2
P(X) 42% 50% 8%
P(X = 0) = P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
P(X = 1) = [ P(lose first game) × P(win second game)] + [ P(win first game) × P(lose second game)] = ( 0.6 × 0.3) + (0.4 × 0.8) = 0.18 + 0.32 = 0.5 = 50%
e) The expected value 
f) Variance 
Standard deviation 
Your answer would be 91.1 units².
We can split this shape into a trapezium and a semicircle, and then find the area of both and add them.
To find the area of a trapezium, the formula is
(a + b)/2 × h, which means we do 14 (the length of AD) + 8 (the length of BC) = 22, and 22/2 = 11. Then we multiply 11 by the height of the trapezium, which is 6 because 10 - 4 = 6. This gives us the area of the trapezium as 66 units².
To find the area of a semicircle, the formula is πr²/2, and the radius is 4 because the diameter is 8 (16 - 8 = 8). This means we do π4²/2 = 16π\2 = 8π = 25.13.
Then we need to add together 66 and 25.13, which equals 91.13, or 91.1 to the nearest tenth.
I hope this helps!
Answer:
It can be written in ratio form or percent form.
Step-by-step explanation:
Ratio form: 37:38
Percent form: 49.33%.
Hope this helps!
Answer:
5.29
Step-by-step explanation:
Answer:
1
Step-by-step explanation:
9-8=1