Answer:
Tin bromine = Snbr2
aluminum fluorate = AlFe3
iron oxide = Fe2o3
potassium chloride = KCL or 2KCL = K2CL2
All Pairs are correct
Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M
Answer:
They all contain switches
<span>Cost and availability of fuel is a considerable factor when dealing with nuclear power. Fission requires an element that can be easily split in a particle accelerator, such as uranium or plutonium. Fusion, on the other hand, uses isotopes of hydrogen atoms, specifically deuterium and tritium, that can be obtained from ordinary water</span>