Answer:
Element 1
Explanation:
The ionization energy is defined as the energy required to remove electrons from the atoms.
We know that the nucleus of the atom attracts the electrons, thus, bound these electrons to the atom.
This means that as the radius decreases, the force of attraction between the nucleus and the electron will increase, therefore, the energy required to remove the electron would increase (and vice-versa).
Based on the above, the atom with the smallest radius would be the atom with the largest first ionization energy.
Hope this help :)
When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6
The first statement (Matter is neither created nor destroyed) is correct.
The second statement would violate the law of conservation of mass (I will refer to this as LCM), as it would mean matter can "flow" into the universe, but not out, meaning the total matter will never be less than it was before.
The third statement violates LCM because it means matter is created during a reaction, which is not true.
The last statement violates LCM because it means matter is lost during a reaction, which is not true.
Answer:
From gas laws (pressure law and Boyles law), the pressure exerted by a gas depends on Temperature of the gas and volume of the container.
Explanation:

• P → Pressure exerted by the gas.
• T → Temperature of the gas.
• V → Volume of the container.
• from the expression, pressure exerted by the gas is directly proportional to temperature of the gas and inversely proportional to the volume of the container.
Answer:The product and reactants reach a final, unchanging level.