Answer:
H = 45 m
Explanation:
First we find the launch velocity of the ball by using the following formula:
v₀ = √(v₀ₓ² + v₀y²)
where,
v₀ = launching velocity = ?
v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s
v₀y = Vertical Component of Launch Velocity = 30 m/s
Therefore,
v₀ = √[(15 m/s)² + (30 m/s)²]
v₀ = 33.54 m/s
Now, we find the launch angle of the ball by using the following formula:
θ = tan⁻¹ (v₀y/v₀ₓ)
θ = tan⁻¹ (30/15)
θ = tan⁻¹ (2)
θ = 63.43°
Now, the maximum height attained by the ball is given by the formula:
H = (v₀² Sin² θ)/2g
H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)
<u>H = 45 m</u>
Answer:
The value is 
Explanation:
From the question we are told that
The time taken to travel to the planet from earth is 
The time to be spent on the ship is
Generally speed can be obtained using the mathematical relation represented below

The 2 in the equation show that the trip is a round trip i.e going and coming back
=> 
=> 
<span>An imaginary line perpendicular to a reflecting surface is called "a normal" (principle line)
So, Your Answer would be Option B
Hope this helps!</span>
Answer:
250N
Explanation:
Given parameters:
Time = 4s
Momentum = 1000kgm/s
Unknown:
Force = ?
Solution:
To solve this problem, we use Newton's second law of motion;
Ft = Momentum
F is the force
t is the time
So;
F x 4 = 1000kgm/s
F = 250N
Answer:
A, C, D
Explanation:
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
and according to Newton's 4th law: An object that is at rest will stay at rest unless a force acts upon it. An object that is in motion will not change its velocity unless a force acts upon it.