Answer:
1. the electromagnetic wave.
Explanation:
Mathematically,
wavelength = velocity ÷ frequency
A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.
Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)
Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.
Answer:
when the ground is very hot and the air is cool.
Explanation:
The hot earth warms a layer of air right above the ground. Light is refracted as it passes through the cool air and onto the hot air sheet (bent). A coating of very warm air near the earth bends the light from the sky almost into a U-shaped bend.
Answer:
oa
Explanation:
it may be oa is the right answer for this question
but I don't know properly
C, Since binary ionic compound is only of 2 elements. Mg is ionic and so i F so thats it. H20 is covalent B is more than 1 element, D looks dodgy, nah its dat ionic compunds wouldnt form big ones like SF (6)
The amount of energy before and after any energy transformations remain the same because energy cannot be created or destroyed. From the law conservation of energy; any time energy is transferred between two objects, or converted from one form into another, no energy is created and none is destroyed. The total amount of energy involved in the process remains the same.