Answer:
The description of that same scenario is listed mostly in the explanation portion following.
Explanation:
This same respiratory system involves several lungs, as well as the systemic circulation concerning this same human heart, which operates in conjunction to pick up more oxygen as well as expel CO2 from the body.
- These same lungs encourage O2 to pass both through alveoli via the blood capillaries surrounding off the front of the alveoli, that are otherwise interconnected to the arterial circulation, which carries O2 rich blood something to human heart through which O2 rich blood was indeed transported to many other blood vessels via the artery
- Consequently, those system works together to promote the transmission of gas throughout tissues and organs and also to ensure sustainable the tissue functions required during metabolic functions.
Answer:
The heat of vaporisation of methanol is "3.48 KJ/Mol"
Explanation:
The amount of heat energy required to convert or transform 1 gram of liquid to vapour is called heat of vaporisation
When 8.7 KJ of heat energy is required to vaporize 2.5 mol of liquid methanol.
Hence, for 1 mol of liquid methanol, amount of heat energy required to evaporate the methanol is = 
= 3.48 KJ
So, the heat of vaporization 
Therefore, the heat of vaporization of methanol is 3.48KJ/Mol
The answer is B. a flashlight uses a battery to operate.
The battery represents the chemical energy. This is converted into electricity, which is converted into light energy.
Answer:
146.85 g/mol
Explanation:
PV=nRT
n=mass/molar mass
covert from mmhg to atm = 0.184 atm
convert from ml to L= 0.108 L
convert from degree C to K= 456.15 K
convert from mg to g= 0.07796g
then rearrange the formula:
n=PV/RT
=(0.184)(0.108)/(0.08206)(456.15)
n= 5.308*10^(-4)
rearrange the n formula interms of molar mass:
Molar mass= mass/n
=0.07796/(5.308*10^-4)
molar mass= 146.85g/mol