Answer:
positively charged elctrons
<u>Answer:</u> The molality of solution is 0.740 m.
<u>Explanation:</u>
To calculate the mass of solvent (water), we use the equation:

Volume of water = 750 mL
Density of water = 1 g/mL
Putting values in above equation, we get:

To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute
= 100.0 g
= Molar mass of solute
= 180 g/mol
= Mass of solvent (water) = 750 g
Putting values in above equation, we get:

Hence, the molality of solution is 0.740 m.
Where x represents the number of hours working as a babysitter and y represents the number of hours working as a cashier...
5x + 6y <u><</u> 90
x + y <u>></u> 20
<u />
Answer:
ionic
Explanation:
I don't know if this correct
TLDR: The kinetic energy is determined to be zero.
Kinetic energy is energy of motion; when an object is moving (i.e. it has speed or velocity), it has some amount of kinetic energy. The equation itself looks like so:
KE=1/2(m)(v)^2,
where "m" represents the mass of the object and "v" represents the objects speed or velocity. In this example, the ball has stopped, meaning it has no speed/velocity. This means that the final kinetic energy is determined to be zero or none, due to the lack of motion. Mathematically, you can see this by substituting "0" in for "v" (the ball is stopped):
KE=1/2(m)(v)^2
KE=1/2(m)(0)^2
KE=1/2(m)*0
KE=1/2*0
KE=0 J,
or zero kinetic energy.
Hope this helps! :)