I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
There are two subshells that are s and p, which are present in the second energy level.
The energy level can be defined as the fixed distances from the nucleus of an atom where electrons may be found. Each energy level is divided into some Subshells. These subshells are known as s-subshell, p-subshell, d-subshell, and f-subshell. This subshell contains some orbitals, these orbitals are the place where there is the maximum probability of getting the electrons. In one orbital, a maximum of two electrons can be present.
Hence, there are two subshells in the second energy level.
Learn more about subshells here:
brainly.com/question/26438203
#SPJ10
At 40 degrees Celsius, approximately 78 grams of potassium bromide can be dissolved.
Answer: -
Lower the specific heat capacity of the metal, more the amount of heat would be required to raise the temperature to the same extent.
So for the same amount of heat added to 5.00 g samples of metals, the metal with the lowest specific heat capacity would experience the smallest temperature change.
For example, if the elements are Al, Au ,Cu and Fe, then Au would experience the smallest temperature change due to least specific heat capacity.