Answer: The balanced equation for the given reaction is
.
Explanation:
A chemical equation which contains same number of atoms on both reactant and product side.
For example, 
Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply
by 2 on reactant side and multiply
by 2. Hence, the equation will be re-written as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Now, there are same number of atoms on both reactant and product side. So, this equation is balanced.
Thus, we can conclude that the balanced equation for the given reaction is
.
Answer:
1f 3f 5g 1p 2d
Explanation:
There is only 4f and 5f orbitals.
G is not an orbital.
P orbital starts with 2p
D orbital starts with 3d
Answer:
The number of molecules is 1.4140*10^24 molecules
Explanation:
To know the number of molecules, we need to determine how many moles of water we have, water has molar mass of 18.015g/mol
This means that one mole of water molecules has a mass of 18.015g.
42.3g * 1 mole H2O/18.015g
= 2.3480 moles H2O
We are using avogadros number to find the number of molecules of water
2.3480 H2O * 6.022*10^ 23moles/ 1mole of H2O
That's 2.3480 multiplied by 6.022*10^23 divided by 1 mole of H2O
Number of molecules = 1.4140 *10^24 molecules
Answer:
d. 103.3
Explanation:
In the given question, the National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. And the units of atmospheric pressure used for reporting the atmospheric pressure data are inches of mercury. For a barometric pressure of 30.51 inches of mercury, we can calculate the pressure in kPa as follow:
In principle, 3.386 kPa is equivalent to the atmospheric pressure of 1 inch of mercury. Thus, 30.51 inches of mercury is equivalent to 30.51 in *(3.386 kPa/1 in) = 103.307 kPa.
Therefore, a barometric pressure of 30.51 inches of mercury corresponds to _____103.3_____ kPa.